Ribosomal protein L1 recognizes the same specific structural motif in its target sites on the autoregulatory mRNA and 23S rRNA
نویسندگان
چکیده
The RNA-binding ability of ribosomal protein L1 is of profound interest since the protein has a dual function as a ribosomal protein binding rRNA and as a translational repressor binding its mRNA. Here, we report the crystal structure of ribosomal protein L1 in complex with a specific fragment of its mRNA and compare it with the structure of L1 in complex with a specific fragment of 23S rRNA determined earlier. In both complexes, a strongly conserved RNA structural motif is involved in L1 binding through a conserved network of RNA-protein H-bonds inaccessible to the solvent. These interactions should be responsible for specific recognition between the protein and RNA. A large number of additional non-conserved RNA-protein H-bonds stabilizes both complexes. The added contribution of these non-conserved H-bonds makes the ribosomal complex much more stable than the regulatory one.
منابع مشابه
Mutational analysis of the L1 binding site of 23S rRNA in Escherichia coli.
The L11 ribosomal protein operon of Escherichia coli contains the genes for L11 and L1 and is feedback regulated by the translational repressor L1. Both the L1 binding site on 23S rRNA and the L1 repressor target site on L11 operon mRNA share similar proposed secondary structures and contain some primary sequence identity. Several site-directed mutations in the binding region of 23S rRNA were c...
متن کاملControl of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea.
The mechanisms for the control of ribosomal protein synthesis have been characterized in detail in Eukarya and in Bacteria. In Archaea, only the regulation of the MvaL1 operon (encoding ribosomal proteins MvaL1, MvaL10, and MvaL12) of the mesophilic Methanococcus vannielii has been extensively investigated. As in Bacteria, regulation takes place at the level of translation. The regulator protei...
متن کاملDomain I of ribosomal protein L1 is sufficient for specific RNA binding
Ribosomal protein L1 has a dual function as a ribosomal protein binding 23S rRNA and as a translational repressor binding its mRNA. L1 is a two-domain protein with N- and C-termini located in domain I. Earlier it was shown that L1 interacts with the same targets on both rRNA and mRNA mainly through domain I. We have suggested that domain I is necessary and sufficient for specific RNA-binding by...
متن کاملMycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site.
The Mycobacterium tuberculosis genome contains an unusually high number of toxin-antitoxin modules, some of which have been suggested to play a role in the establishment and maintenance of latent tuberculosis. Nine of these toxin-antitoxin loci belong to the mazEF family, encoding the intracellular toxin MazF and its antitoxin inhibitor MazE. Nearly every MazF ortholog recognizes a unique three...
متن کاملThe GA motif: an RNA element common to bacterial antitermination systems, rRNA, and eukaryotic RNAs.
Two different transcription termination control mechanisms, the T box and S box systems, are used to regulate transcription of many bacterial aminoacyl-tRNA synthetase, amino acid biosynthesis, and amino acid transport genes. Both of these regulatory mechanisms involve an untranslated mRNA leader region capable of adopting alternate structural conformations that result in transcription terminat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005